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Chapter 3

Elementary Geometry

3.1. Plane Geometry
3.1.1. Triangles

3.1.1-1. Plane triangle and its properties.

1◦. A plane triangle, or simply a triangle, is a plane figure bounded by three straight line
segments (sides) connecting three noncollinear points (vertices) (Fig. 3.1a). The smaller
angle between the two rays issuing from a vertex and passing through the other two vertices
is called an (interior) angle of the triangle. The angle adjacent to an interior angle is called
an external angle of the triangle. An external angle is equal to the sum of the two interior
angles to which it is not adjacent.

A

a

(a) (b)

α

b

c

γ

β
B

C

Figure 3.1. Plane triangle (a). Midline of a triangle (b).

A triangle is uniquely determined by any of the following sets of its parts:
1. Two angles and their included side.
2. Two sides and their included angle.
3. Three sides.

Depending on the angles, a triangle is said to be:
1. Acute if all three angles are acute.
2. Right (or right-angled) if one of the angles is right.
3. Obtuse if one of the angles is obtuse.

Depending on the relation between the side lengths, a triangle is said to be:
1. Regular (or equilateral) if all sides have the same length.
2. Isosceles if two of the sides are of equal length.
3. Scalene if all sides have different lengths.

2◦. Congruence tests for triangles:
1. If two sides of a triangle and their included angle are congruent to the corresponding

parts of another triangle, then the triangles are congruent.
2. If two angles of a triangle and their included side are congruent to the corresponding

parts of another triangle, then the triangles are congruent.
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44 ELEMENTARY GEOMETRY

3. If three sides of a triangle are congruent to the corresponding sides of another triangle,
then the triangles are congruent.

3◦. Triangles are said to be similar if their corresponding angles are equal and their corre-
sponding sides are proportional.

Similarity tests for triangles:
1. If all three pairs of corresponding sides in a pair of triangles are in proportion, then the

triangles are similar.
2. If two pairs of corresponding angles in a pair of triangles are congruent, then the triangles

are similar.
3. If two pairs of corresponding sides in a pair of triangles are in proportion and the

included angles are congruent, then the triangles are similar.

The areas of similar triangles are proportional to the squares of the corresponding linear
parts (such as sides, altitudes, diagonals, etc.).

4◦. The line connecting the midpoints of two sides of a triangle is called a midline of the
triangle. The midline is parallel to and half as long as the third side (Fig. 3.1b).

Let a, b, and c be the lengths of the sides of a triangle; let α, β, and γ be the respective
opposite angles (Fig. 3.1a); let R and r be the circumradius and the inradius, respectively;
and let p = 1

2 (a + b + c) be the semiperimeter.
Table 3.1 represents the basic properties and relations characterizing triangles.

TABLE 3.1
Basic properties and relations characterizing plane triangles

No. The name of property Properties and relations

1 Triangle inequality The length of any side of a triangle does not exceed
the sum of lengths of the other two sides

2
Sum of angles of

a triangle α + β + γ = 180◦

3 Law of sines
a

sinα
=

b

sinβ
=

c

sin γ
= 2R

4 Law of cosines c2 = a2 + b2 – 2ab cos γ

5 Law of tangents
a + b
a – b

=
tan
[ 1

2 (α + β)
]

tan
[ 1

2 (α – β)
] =

cot
( 1

2 γ
)

tan
[ 1

2 (α – β)
]

6
Theorem on projections

(law of cosines) c = a cosβ + b cosα

7
Trigonometric
angle formulas

sin
γ

2
=

√
(p – a)(p – b)

ab
, cos

γ

2
=

√
p(p – c)
ab

,

tan
γ

2
=

√
(p – a)(p – b)
p(p – c)

, sin γ =
2
ab

√
p(p – a)(p – b)(p – c)

8 Law of tangents tan γ =
c sinα

b – c cosα
=

c sinβ
a – c cosβ

9 Mollweide’s formulas

a + b
c

=
cos
[ 1

2 (α – β)
]

sin
( 1

2 γ
) =

cos
[ 1

2 (α – β)
]

cos
[ 1

2 (α + β)
] ,

a – b
c

=
sin
[ 1

2 (α – β)
]

cos
( 1

2 γ
) =

sin
[ 1

2 (α – β)
]

sin
[ 1

2 (α + β)
]
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3.1. PLANE GEOMETRY 45

Table 3.2 permits one to find the sides and angles of an arbitrary triangle if three
appropriately chosen sides and/or angles are given. From the relations given in Tables 3.1
and 3.2, one can derive all missing relations by cyclic permutations of the sides a, b, and c
and the angles α, β, and γ.

TABLE 3.2
Solution of plane triangles

No. Three parts
specified

Formulas for the remaining parts

1 Three sides
a, b, c

First method.

One of the angles is determined by the law of cosines, cosα =
b2 + c2 – a2

2bc
.

Then either the law of sines or the law of cosines is applied.
Second method.

One of the angles is determined by trigonometric angle formulas. Further
proceed in a similar way.

Remark. The sum of lengths of any two sides must be greater than the length of
the third side.

2 Two sides a, b
and the included

angle γ

First method.
The side c is determined by the law of cosines, c =

√
a2 + b2 – 2ab cos γ.

The angle α is determined by either the law of cosines or the law of sines. The
angle β is determined from the sum of angles in triangle, β = 180◦ – α – γ.

Second method.
α + β is found from the sum of angles in triangle, α + β = 180◦ – γ;

α – β is found from the law of tangents, tan
α – β

2
=
a – b
a + b

cot
γ

2
.

Then α and β can be found. The third side c is determined by either the law of
cosines or the law of sines.

3 A side c
and the two
angles α, β
adjacent to it

The third angle γ is found from the sum of angles in triangle, γ = 180◦ – α – β.
Sides a and b are determined by the law of sines.

4 Two sides a, b
and the angle α
opposite one

of them

The second angle is determined by the law of sines, sinβ =
b

a
sinα.

The third angle is γ = 180◦ – α – β.

The third side is determined by the law of sines, c = a
sin γ
sinα

.

Remark. Five cases are possible:
1. a > b; i.e., the angle is opposite the greater side. Then α > β, β < 90◦ (the larger

angle is opposite the larger side), and the triangle is determined uniquely.
2. a = b; i.e., the triangle is isosceles and is determined uniquely.
3. a < b and b sinα < a. Then there are two solutions, β1 + β2 = 180◦.
4. a < b and b sinα = a. Then the solution is unique, β = 90◦.
5. a < b and b sinα > a. Then there are no solutions.

3.1.1-2. Medians, angle bisectors, and altitudes of triangle.

A straight line through a vertex of a triangle and the midpoint of the opposite side is called
a median of the triangle (Fig. 3.2a). The three medians of a triangle intersect in a single
point lying strictly inside the triangle, which is called the centroid or center of gravity of
the triangle. This point cuts the medians in the ratio 2:1 (counting from the corresponding
vertices).

© 2007 by Taylor & Francis Group, LLC
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46 ELEMENTARY GEOMETRY

a

( )a ( )b ( )c

ma

c

b a b

c

a

h

h
h

a

b
c

b

c

Figure 3.2. Medians (a), angle bisectors (b), and altitudes (c) of a triangle.

The length of the median ma to the side a opposite the angle α is equal to

ma =
1
2

√
2(b2 + c2) – a2 =

1
2

√
a2 + b2 + 2ab cos γ. (3.1.1.1)

An angle bisector of a triangle is a line segment between a vertex and a point of the
opposite side and dividing the angle at that vertex into two equal parts (Fig. 3.2b). The three
angle bisectors intersect in a single point lying strictly inside the triangle. This point is
equidistant from all sides and is called the incenter (the center of the incircle of the triangle).
Concerning the radius r of the incircle, see Paragraph 3.1.1-3. The angle bisector through
a vertex cuts the opposite side in ratio proportional to the adjacent sides of the triangle.

The length of the angle bisector la drawn to the side a is given by the formulas

la =
√
bc – b1c1 =

√
bc[(b + c)2 – a2]

b + c
=

√
4p(p – a)bc
b + c

,

la =
2cb cos

( 1
2α
)

b + c
= 2R

sin β sin γ

cos
[ 1

2 (β – γ)
] = 2p

sin
( 1

2β
)

sin
( 1

2γ
)

sin β + sin γ
,

(3.1.1.2)

where b1 and c1 are the segments of the side a cut by bisector la and adjacent to the sides b
and c, respectively, and R is the circumradius (see Paragraph 3.1.1-3).

An altitude of a triangle is a straight line passing through a vertex and perpendicular to
the straight line containing the opposite side (Fig. 3.2c). The three altitudes of a triangle
intersect in a single point, called the orthocenter of the triangle.

The length of the altitude ha to the side a is given by the formulas

ha = b sin γ = c sin β =
bc

2R
,

ha = 2(p – a) cos
α

2
cos

β

2
cos

γ

2
= 2(p – b) sin

α

2
sin

β

2
cos

γ

2
.

(3.1.1.3)

The lengths of the altitude, the angle bisector, and the median through the same vertex
satisfy the inequality ha ≤ la ≤ma. If ha = la =ma, then the triangle is isosceles; moreover,
the first equality implies the second, and vice versa.

3.1.1-3. Circumcircle, incircle, and excircles.

A straight line passing through the midpoint of a segment and perpendicular to it is called
the perpendicular bisector of the segment. The circle passing through the vertices of a
triangle is called the circumcircle of the triangle. The center O1 of the circumcircle, called
the circumcenter, is the point where the perpendicular bisectors of the sides of the triangle

© 2007 by Taylor & Francis Group, LLC
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3.1. PLANE GEOMETRY 47

O
O O

1

1 1

R

( )a

Q

( )bSimpson
line

Euler
lin

e

( )c

Figure 3.3. The circumcircle of a triangle. The circumcenter (a), the Simpson line (b), and the Euler line (c).

meet (Fig. 3.3a). The feet of the perpendiculars drawn from a point Q on the circumcircle
to the three sides of the triangle lie on the same straight line called the Simpson line of Q
with respect to the triangle (Fig. 3.3b). The circumcenter, the orthocenter, and the centroid
lie on a single line, called the Euler line (Fig. 3.3c).

The circle tangent to the three sides of a triangle and lying inside the triangle is called
the incircle of the triangle. The center O2 of the incircle (the incenter) is the point where
the angle bisectors meet (Fig. 3.4a). The straight lines connecting the vertices of a triangle
with the points at which the incircle is tangent to the respective opposite sides intersect in
a single point G called the Gergonne point (Fig. 3.4b).

a a
b bR

c c

2 2O O

( )a

G

( )b

Figure 3.4. The incircle of a triangle (a). The incenter and the Gergonne point (b).

The circle tangent to one side of a triangle and to the extensions of the other two sides is
called an excircle of the triangle. Each triangle has three excircles. The center of an excircle
(an excenter) is the point of concurrency of two external angle bisectors and an interior
angle bisector. The straight lines connecting the vertices of a triangle with the points at
which the respective opposite sides are tangent to the excircles intersect in a single pointN ,
called the Nagel point (Fig. 3.5).

The inradius r, the circumradius R, and the exradii ρa, ρb, and ρc satisfy the relations

r =

√
(p – a)(p – b)(p – c)

p
= p tan

α

2
tan

β

2
tan

γ

2

= 4R sin
α

2
sin

β

2
sin

γ

2
= (p – c) tan

γ

2
=
S

p
, (3.1.1.4)

R =
a

2 sinα
=

b

2 sin β
=

c

2 sin γ
=
abc

4S
=

p

4 cos
( 1

2α
)

cos
( 1

2β
)

cos
( 1

2γ
) , (3.1.1.5)

1
r

=
1
ρa

+
1
ρb

+
1
ρc

. (3.1.1.6)

© 2007 by Taylor & Francis Group, LLC
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48 ELEMENTARY GEOMETRY

N

O

O

1

2

Figure 3.5. Excircles of a triangle. The Nagel point.

The distance d1 between the circumcenter and the incenter and the distance d2 between
the circumcenter and the excenter are given by the expressions

d1 =
√
R2 – 2Rr, (3.1.1.7)

d2 =
√
R2 + 2Rρa. (3.1.1.8)

3.1.1-4. Area of a triangle.

The area S of a triangle is given by the formulas

S = aha =
1
2
ab sin γ = rp,

S =
√
p(p – a)(p – b)(p – c) (Heron’s formula),

S =
abc

4R
= 2R2 sinα sin β sin γ,

S = c2 sinα sin β
2 sin γ

= c2 sinα sin β
2 sin(α + β)

.

(3.1.1.9)

3.1.1-5. Theorems about points and lines related to triangle.

CEVA’S THEOREM. Let points C1, A1, and B1 lie on the sides AB, BC , and CA,
respectively, of a triangle (Fig. 3.6). The straight lines AA1, BB1, and CC1 are concurrent
or parallel if and only if

AC1

C1B
⋅
BA1

A1C
⋅
CB1

B1A
= 1. (3.1.1.10)

STEWART’S THEOREM. If a straight line through a vertex of a triangle divides the opposite
side into segments of lengths m and n (Fig. 3.7), then

(m + n)(p2 +mn) = b2m + c2n. (3.1.1.11)

© 2007 by Taylor & Francis Group, LLC
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3.1. PLANE GEOMETRY 49

A

B

C

A

B

1

1

1 C

Figure 3.6. Ceva’s theorem.

C

c b

m n

p

B

A

Figure 3.7. Stewart’s theorem.

MENELAUS’S THEOREM. If a straight line intersects sides AB,BC , and CA of a triangle
(Fig. 3.8) or their extensions at points C1, A1, and B1, respectively, then

AC1

C1B
⋅
BA1

A1C
⋅
CB1

B1A
= –1. (3.1.1.12)

CA

B

B
A

C

1
1

1

Figure 3.8. Menelaus’s theorem.

A
C

B

2
2

2

CA

B

Figure 3.9. Morley’s theorem.

Straight lines dividing the interior angles of a triangle into three equal parts are called
angle trisectors.

MORLEY’S THEOREM. The three points of intersection of adjacent angle trisectors of a
triangle form an equilateral triangle (Fig. 3.9).

In a triangle, the midpoints of the three sides, the feet of the three altitudes, and the
midpoints of the segments of the altitudes between the orthocenter and the vertices all lie
on a single circle, the nine-point circle (Fig. 3.10).

C

O

A

B
Euler

lin
e

Figure 3.10. Nine-point circle.

FEUERBACH’S THEOREM. The nine-point circle is tangent to the incircle and the three
excircles. The points of tangency are called the Feuerbach points. The center of the
nine-point circle lies on the Euler line (see Paragraph 3.1.1-3).

© 2007 by Taylor & Francis Group, LLC
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50 ELEMENTARY GEOMETRY

A

a

α

b

m
с

n

h

β
B

C

Figure 3.11. A right triangle.

3.1.1-6. Right (right-angled) triangles.

A right triangle is a triangle with a right angle. The side opposite the right angle is called
the hypotenuse, and the other two sides are called the legs (Fig. 3.11).

The hypotenuse c, the legs a and b, and the angles α and β opposite the legs satisfy the
following relations:

α + β = 90◦;

sinα = cos β =
a

c
, sin β = cosα =

b

c
,

tanα = cot β =
a

b
, tan β = cotα =

b

a
.

(3.1.1.13)

One also has

a2 + b2 = c2 (PYTHAGOREAN THEOREM), (3.1.1.14)
h2 = mn, a2 = mc, b2 = nc, (3.1.1.15)

where h is the length of the altitude drawn to the hypotenuse; moreover, the altitude cuts
the hypotenuse into segments of lengths m and n.

In a right triangle, the length of the median mc drawn from the vertex of the right
angle coincides with the circumradius R and is equal to half the length of the hypotenuse c,
mc = R = 1

2 c. The inradius is given by the formula r = 1
2 (a + b – c). The area of the right

triangle is S = aha = 1
2ab (see also Paragraphs 3.1.1-2 to 3.1.1-4).

3.1.1-7. Isosceles and equilateral triangles.

1◦. An isosceles triangle is a triangle with two equal sides. These sides are called the legs,
and the third side is called the base (Fig. 3.12a).

a a

( )a ( )b

α α

a a

a

Figure 3.12. An isosceles triangle (a). An equilateral triangle (b).

© 2007 by Taylor & Francis Group, LLC
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3.1. PLANE GEOMETRY 51

Properties of isosceles triangles:
1. In an isosceles triangle, the angles adjacent to the base are equal.
2. In an isosceles triangle, the median drawn to the base is the angle bisector and the

altitude.
3. In an isosceles triangle, the sum of distances from a point of the base to the legs is

constant.

Criteria for a triangle to be isosceles:
1. If two angles in a triangle are equal, then the triangle is isosceles.
2. If a median in a triangle is also an altitude, then the triangle is isosceles.
3. If a bisector in a triangle is also an altitude, then the triangle is isosceles.

2◦. An equilateral (or regular) triangle is a triangle with all three sides equal (Fig. 3.12b).
All angles of an equilateral triangle are equal to 60◦. In an equilateral triangle, the circum-
radius R and the inradius r satisfy the relation R = 2r.

For an equilateral triangle with side length a, the circumradius and the inradius are given
by the formulas R =

√
3

3 a and r =
√

3
6 a, and the area is equal to S =

√
3

4 a2.

3.1.2. Polygons

3.1.2-1. Polygons. Basic information.

A polygon is a plane figure bounded by a closed broken line, i.e., a line obtained if one takes
n distinct points such that no three successive points are collinear and draws a straight line
segment between each of these points and its successor as well as between the last point and
the first point (Fig. 3.13a). The segments forming a polygon are called the sides (or edges),
and the points themselves are called the vertices of the polygon. Two sides sharing a vertex,
as well as two successive vertices (the endpoints of the same edge), are said to be adjacent.
A polygon can be self-intersecting, but the points of self-intersection should not be vertices
(Fig. 3.13b). A polygon is said to be plane if its vertices are coplanar. A polygon is said to
be simple if its nonadjacent sides do not have common interior or endpoints. A polygon is
said to be convex if it lies on one side of any straight line passing through two neighboring
vertices (Fig. 3.13c). In what follows, we consider only plane simple convex polygons.

( )c( )a ( )b

Figure 3.13. Polygons. Nonself-intersecting (a), self-intersecting (b), and convex (c) polygon.

An (interior) angle of a convex polygon is the angle between two sides meeting in a
vertex. An angle adjacent to an interior angle is called an external angle of the convex
polygon. A convex polygon is said to be inscribed in a circle if all of its vertices lie on the
circle. A polygon is said to be circumscribed about a circle if all of its sides are tangent to
the circle.

For a convex polygon with n sides, the sum of interior angles is equal to 180◦(n – 2),
and the sum of external angles is equal to 360◦.

© 2007 by Taylor & Francis Group, LLC
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52 ELEMENTARY GEOMETRY

One can find the area of an arbitrary polygon by dividing it into triangles.

3.1.2-2. Properties of quadrilaterals.

1. The diagonals of a convex quadrilateral meet.
2. The sum of interior angles of a convex quadrilateral is equal to 360◦ (Fig. 3.14a and b).
3. The lengths of the sides a, b, c, and d, the diagonals d1 and d2, and the segment
m connecting the midpoints of the diagonals satisfy the relation a2 + b2 + c2 + d2 =
d2

1 + d2
2 + 4m2.

4. A convex quadrilateral is circumscribed if and only if a + c = b + d.
5. A convex quadrilateral is inscribed if and only if α + γ = β + δ.
6. The relation ac + bd = d1d2 holds for inscribed quadrilaterals (PTOLEMY’S THEOREM).

φ

m

d

cb

a

d

d
1

2

( )a ( )b

β

γ

δ

α
d

cb

a

Figure 3.14. Quadrilaterals.

3.1.2-3. Areas of quadrilaterals.

The area of a convex quadrilateral is equal to

S =
1
2
d1d2 sinϕ =

√
p(p – a)(p – b)(p – c)(p – d) – abcd cos2 β + δ

2
, (3.1.2.1)

where ϕ is the angle between the diagonals d1 and d2 and p = 1
2 (a + b + c + d).

The area of an inscribed quadrilateral is

S =
√
p(p – a)(p – b)(p – c)(p – d). (3.1.2.2)

The area of a circumscribed quadrilateral is

S =

√
abcd sin2 β + δ

2
. (3.1.2.3)

If a quadrilateral is simultaneously inscribed and circumscribed, then

S =
√
abcd. (3.1.2.4)

3.1.2-4. Basic quadrilaterals.

1◦. A parallelogram is a quadrilateral such that both pairs of opposite sides are parallel
(Fig. 3.15a).
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h d

c

b

a

( )a ( )b

d

d

1

2

α

a

a

dd
1

2

Figure 3.15. A parallelogram (a) and a rhombus (b).

Attributes of parallelograms (a quadrilateral is a parallelogram if):

1. Both pairs of opposite sides have equal length.
2. Both pairs of opposite angles are equal.
3. Two opposite sides are parallel and have equal length.
4. The diagonals meet and bisect each other.

Properties of parallelograms:

1. The diagonals meet and bisect each other.
2. Opposite sides have equal length, and opposite angles are equal.
3. The diagonals and the sides satisfy the relation d2

1 + d2
2 = 2(a2 + b2).

4. The area of a parallelogram isS =ah, where h is the altitude (see also Paragraph 3.1.2-3).

2◦. A rhombus is a parallelogram in which all sides are of equal length (Fig. 3.15b).

Properties of rhombi:

1. The diagonals are perpendicular.
2. The diagonals are angle bisectors.
3. The area of a rhombus is S = ah = a2 sinα = 1

2d1d2.

3◦. A rectangle is a parallelogram in which all angles are right angles (Fig. 3.16a).

b

a d

( )a

b

a d

( )b

Figure 3.16. A rectangle (a) and a square (b).

Properties of rectangles:

1. The diagonals have equal lengths.
2. The area of a rectangle is S = ab.

4◦. A square is a rectangle in which all sides have equal lengths (Fig. 3.16b). A square is
also a special case of a rhombus (all angles are right angles).
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Properties of squares:
1. All angles are right angles.
2. The diagonals are equal to d = a

√
2.

3. The diagonals meet at a right angle and are angle bisectors.
4. The area of a square is equal to S = a2 = 1

2d
2.

5◦. A trapezoid is a quadrilateral in which two sides are parallel and the other two sides
are nonparallel (Fig. 3.17). The parallel sides a and b are called the bases of the trapezoid,
and the other two sides are called the legs. In an isosceles trapezoid, the legs are of equal
length. The line segment connecting the midpoints of the legs is called the median of the
trapezoid. The length of the median is equal to half the sum of the lengths of the bases,
m = 1

2 (a + b).

c d

h

b

a

m

Figure 3.17. A trapezoid.

The perpendicular distance between the bases is called the altitude of a trapezoid.

Properties of trapezoids:
1. A trapezoid is circumscribed if and only if a + b = c + d.
2. A trapezoid is inscribed if and only if it is isosceles.
3. The area of a trapezoid is S = 1

2 (a + b)h = mh = 1
2d1d2 sinϕ, where ϕ is the angle

between the diagonals d1 and d2.
4. The segment connecting the midpoints of the diagonals is parallel to the bases and has

the length 1
2 (b – a).

Example 1. Consider an application of plane geometry to measuring distances in geodesy. Suppose that
the angles α, β, γ, and δ between a straight lineAB and the directions to pointsD and C are known at pointsA
and B (Fig. 3.18a). Suppose also that the distance a = AB (or b = DC) is known and the task is to find the
distance b = DC (or a = AB).

A B

( )a ( )b

C

D

O

σφ

β
α γ

δ

ψ

σ A

B

C

D

a

x
z

φ

βα

γ

y

ψ
b

Figure 3.18. Applications of plane geometry in geodesy.

Let us find the angles ϕ and ψ. Since σ is the angle at the vertex O in both triangles AOB and DOC,
it follows that α + γ = ϕ + ψ. Let ε1 = 1

2 (ϕ + ψ). We twice apply the law of sines (Table 3.1) and find the
half-difference of the desired angles. The main formulas read

AD

a
=

sin γ
sin(π – α – β – γ)

=
sin γ

sin(α + β + γ)
,

BC

a
=

sinα
sin(α + γ + δ)

,
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3.1. PLANE GEOMETRY 55

b

AD
=

sinβ
sin γ

,
b

BC
=

sin δ
sinϕ

.

These relations imply that

b

a
=

sinβ sin γ
sinψ sin(α + β + γ)

=
sin δ sinα

sinϕ sin(α + γ + δ)
(3.1.2.5)

and hence
sinϕ
sinψ

=
sin δ sinα sin(α + β + γ)
sinβ sin γ sin(α + γ + δ)

= cot η,

where η is an auxiliary angle. By adding and subtracting, we obtain

sinϕ – sinψ
sinϕ + sinψ

=
cot η – 1
cot η + 1

,
2 cos

[ 1
2 (ϕ + ψ)

]
sin
[ 1

2 (ϕ – ψ)
]

2 sin
[ 1

2 (ϕ + ψ)
]

cos
[ 1

2 (ϕ – ψ)
] =

cot
( 1

4π
)

cot η – 1
cot η + cot

( 1
4π
) ,

tan
ϕ – ψ

2
= tan

ϕ + ψ
2

cot
( π

4
+ η
)

= tan
α + γ

2
cot
( π

4
+ η
)

.

From this we find ε2 = 1
2 (ϕ – ψ) and, substituting ϕ = ε1 + ε2 and ψ = ε1 – ε2 into (3.1.2.5), obtain the

desired distance.

Example 2. Suppose that the mutual position of three points A, B, and C is determined by the seg-
ments AC = a and BC = b, and the angle ∠ACB = γ. Suppose that the following angles have been measured
at some point D: ∠CDA = α and ∠CDB = β.

In the general case, one can find the position of point D with respect to A, B, and C, i.e., uniquely
determine the segments x, y, and z (Fig. 3.18b). For this to be possible, it is necessary that D does not lie on
the circumcircle of the triangle ABC. We have

ϕ + ψ = 2π – (α + β + γ) = 2ε1. (3.1.2.6)

By the law of sines (Table 3.1), we obtain

sinϕ =
z

a
sinα, sinψ =

z

b
sinβ, (3.1.2.7)

which implies that
sinϕ
sinψ

=
b sinα
a sinβ

= cot η, (3.1.2.8)

where η is an auxiliary angle. We find the angles ϕ and ψ from (3.1.2.6) and (3.1.2.8), substitute them
into (3.1.2.7) to determine z, and finally apply the law of sines to obtain x and y.

3.1.2-5. Regular polygons.

A convex polygon is said to be regular if all of its sides have the same length and all of its
interior angles are equal. A convex n-gon is regular if and only if it is taken to itself by the
rotation by an angle of 2π/n about some point O. The point O is called the center of the
regular polygon. The angle between two rays issuing from the center and passing through
two neighboring vertices is called the central angle (Fig. 3.19).

α
γ

r

R
β

Figure 3.19. A regular polygon.
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56 ELEMENTARY GEOMETRY

Properties of regular polygons:
1. The center is equidistant from all vertices as well as from all sides of a regular polygon.
2. A regular polygon is simultaneously inscribed and circumscribed; the centers of the

circumcircle and the incircle coincide with the center of the polygon itself.
3. In a regular polygon, the central angle is α = 360◦/n, the external angle is β = 360◦/n,

and the interior angle is γ = 180◦ – β.
4. The circumradius R, the inradius r, and the side length a of a regular polygon satisfy

the relations
a = 2

√
R2 – r2 = 2R sin

α

2
= 2r tan

α

2
. (3.1.2.9)

5. The area S of a regular n-gon is given by the formula

S =
arn

2
= nr2 tan

α

2
= nR2 sin

α

2
=

1
4
na2 cot

α

2
. (3.1.2.10)

Table 3.3 presents several useful formulas for regular polygons.

TABLE 3.3
Regular polygons (a is the side length)

No. Name Inradius r Circumradius R Area S

1 Regular polygon
a

2 tan π
n

a

2 sin π
n

1
2
arn

2 Triangle
√

3
6
a

√
3

3
a

√
3

4
a2

3 Square 1
2
a

1√
2
a a2

4 Pentagon

√
5 + 2

√
5

20
a

√
5 +

√
5

10
a

√
25 + 10

√
5

4
a2

5 Hexagon
√

3
2
a a 3

√
3

2
a2

6 Octagon 1 +
√

2
2

a

√
2 +

√
2

2
a 2(1 +

√
2)a2

7 Enneagon 5 + 2
√

5
2

a
1 +

√
5

2
a

√
5 + 2

√
5

2
a2

8 Dodecagon 2 +
√

3
2

a
3 +

√
3√

6
a 3(2 +

√
3)a2

3.1.3. Circle

3.1.3-1. Some definitions and formulas.

The circle of radius R centered at O is the set of all points of the plane at a fixed distance
R from a fixed point O (Fig. 3.20a). A plane figure bounded by a circle is called a disk.
A segment connecting two points on a circle is called a chord. A chord passing through
the center of a circle is called a diameter of the circle (Fig. 3.20b). The diameter length
is d = 2R. A straight line that meets a circle at a single point is called a tangent, and the
common point is called the point of tangency (Fig. 3.20c). An angle formed by two radii is
called a central angle. An angle formed by two chords with a common endpoint is called
an inscribed angle.
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O

R R

d

( )a

O O

( )b ( )c

Figure 3.20. A circle (a). A diameter (b) and a tangent (c) of a circle.

Properties of circles and disks:

1. The circumference is L = 2πR = πd = 2
√
πS.

2. The area of a disk is S = πR2 = 1
4πd

2 = 1
4Ld.

3. The diameter of a circle is a longest chord.
4. The diameter passing through the midpoint of the chord is perpendicular to the chord.
5. The radius drawn to the point of tangency is perpendicular to the tangent.
6. An inscribed angle is half the central angle subtended by the same chord, α = 1

2 ∠BOC
(Fig. 3.21a).

7. The angle between a chord and the tangent to the circle at an endpoint of the chord is
β = 1

2 ∠AOC (Fig. 3.21a).

8. The angle between two chords is γ = 1
2 (

�
BC +

�
ED) (Fig. 3.21b).

9. The angle between two secants is α = 1
2 (

�
DE –

�
BC) (Fig. 3.21c).

O

B

2α

2β
β

α

C

A

( )a

O

B
α

β

C

D

E

F
A

O
α

E

C

D

B

A

O

BγC

D
E

A

( )b

( )c ( )d

Figure 3.21. Properties of circles and disks.

10. The angle between a secant and the tangent to the circle at an endpoint of the secant is
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β = 1
2 (
�
FE –

�
BF ) (Fig. 3.21c).

11. The angle between two tangents is α = 1
2 (

�
BDC –

�
BEC) (Fig. 3.21d).

12. If two chords meet, then AC ⋅AD = AB ⋅AE = R2 –m2 (Fig. 3.21b).
13. For secants, AC ⋅AD = AB ⋅AE = m2 – R2 (Fig. 3.21c).
14. For a tangent and a secant, AF ⋅AF = AC ⋅AD (Fig. 3.21c).

3.1.3-2. Segment and sector.

A plane figure bounded by two radii and one of the subtending arcs is called a (circular)
sector. A plane figure bounded by an arc and the corresponding chord is called a segment
(Fig. 3.22a). If R is the radius of the circle, l is the arc length, a is the chord length, α is the
central angle (in degrees), and h is the height of the segment, then the following formulas
hold:

a = 2
√

2hR – h2 = 2R sin
α

2
,

h = R –

√
R2 –

a2

4
= R

(
1 – cos

α

2

)
=
a

2
tan

α

4
,

l =
2πRα

360
≈ 0.01745Rα.

(3.1.3.1)

The area of a circular sector is given by the formula

S =
lR

2
=
πR2α

360
≈ 0.00873R2α, (3.1.3.2)

and the area of a segment not equal to a half-disk is given by the expression

S1 =
πR2α

360
� SΔ, (3.1.3.3)

where SΔ is the area of the triangle with vertices at the center of the disk and at the endpoints
of the radii bounding the corresponding sector. One takes the minus sign for α < 180 and
the plus sign for α > 180.

The arc length and the area of a segment can be found by the approximate formulas

l ≈
8b – a

3
, l ≈

√
a2 +

16h2

3
,

S1 ≈
h(6a + 8b)

15
,

(3.1.3.4)

where b is the chord of the half-segment (see Fig. 3.22a).

3.1.3-3. Annulus.

An annulus is a plane figure bounded by two concentric circles of distinct radii (Fig. 3.22b).
Let R be the outer radius of an annulus (the radius of the outer bounding circle), and let r
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r

R

( )b( )a

φ

l

α

h

R

b

a

Figure 3.22. A segment (a) and an annulus (b).

be the inner radius (the radius of the inner bounding circle). Then the area of the annulus
is given by the formula

S = π(R2 – r2) =
π

4
(D2 – d2) = 2πρδ, (3.1.3.5)

where D = 2R and d = 2r are the outer and inner diameters, ρ = 1
2 (R + r) is the midradius,

and δ = R – r is the width of the annulus.
The area of the part of the annulus contained in a sector of central angle ϕ, given in

degrees (see Fig. 3.22b), is given by the formula

S =
πϕ

360
(R2 – r2) =

πϕ

1440
(D2 – d2) =

πϕ

180
ρδ. (3.1.3.6)

3.2. Solid Geometry
3.2.1. Straight Lines, Planes, and Angles in Space

3.2.1-1. Mutual arrangement of straight lines and planes.

1◦. Two distinct straight lines lying in a single plane either have exactly one point of
intersection or do not meet at all. In the latter case, they are said to be parallel. If two
straight lines do not lie in a single plane, then they are called skew lines.

The angle between skew lines is determined as the angle between lines parallel to them
and lying in a single plane (Fig. 3.23a). The distance between skew lines is the length of
the straight line segment that meets both lines and is perpendicular to them.

α

( )a ( )b

Figure 3.23. The angle between skew lines (a). The angle between a line and a plane (b).

2◦. Two distinct planes either intersect in a straight line or do not have common points.
In the latter case, they are said to be parallel. Coinciding planes are also assumed to be
parallel. If two planes are perpendicular to a single straight line or each of them contains a
pair of intersecting straight lines parallel to the corresponding lines in the other pair, then
the planes are parallel.
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60 ELEMENTARY GEOMETRY

3◦. A straight line either entirely lies in the plane, meets the plane at a single point, or has
no common points with the plane. In the last case, the line is said to be parallel to the plane.

The angle between a straight line and a plane is equal to the angle between the line
and its projection onto the plane (Fig. 3.23b). If a straight line is perpendicular to two
intersecting straight lines on a plane, then it is perpendicular to each line on the plane, i.e.,
perpendicular to the plane.

3.2.1-2. Polyhedral angles.

1◦. A dihedral angle is a figure in space formed by two half-planes issuing from a single
straight line as well as the part of space bounded by these half-planes. The half-planes are
called the faces of the dihedral angle, and their common straight line is called the edge. A
dihedral angle is measured by its linear angle ABC (Fig. 3.24a), i.e., by the angle between
the perpendiculars raised to the edge DE of the dihedral angle in both planes (faces) at the
same point.

A

C B

E

( )a ( )b

D

Figure 3.24. A dihedral (a) and a trihedral (b) angle.

2◦. A part of space bounded by an infinite triangular pyramid is called a trihedral angle
(Fig. 3.24b). The faces of this pyramid are called the faces of the trihedral angle, and the
vertex of the pyramid is called the vertex of a trihedral angle. The rays in which the faces
intersect are called the edges of a trihedral angle. The edges form face angles, and the faces
form the dihedral angles of the trihedral angle. As a rule, one considers trihedral angles
with dihedral angles less than π (or 180◦), i.e., convex trihedral angles. Each face angle of
a convex trihedral angle is less than the sum of the other two face angles and greater than
their difference.

Two trihedral angles are equal if one of the following conditions is satisfied:

1. Two face angles, together with the included dihedral angle, of the first trihedral angle
are equal to the respective parts (arranged in the same order) of the second trihedral
angle.

2. Two dihedral angles, together with the included face angle, of the first trihedral angle
are equal to the respective parts (arranged in the same order) of the second trihedral
angle.

3. The three face angles of the first trihedral angle are equal to the respective face angles
(arranged in the same order) of the second trihedral angle.

4. The three dihedral angles of the first trihedral angle are equal to the respective dihedral
angles (arranged in the same order) of the second trihedral angle.

3◦. A polyhedral angle OABCDE (Fig. 3.25a) is formed by several planes (faces) having
a single common point (the vertex) and successively intersecting along straight lines OA,
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E

B

A

O

D

C

( )a ( )b

Figure 3.25. A polyhedral (a) and a solid (b) angle.

OB, . . . , OE (the edges). Two edges belonging to the same face form a face angle of the
polyhedral angle, and two neighboring faces form a dihedral angle.

Polyhedral angles are equal (congruent) if one can be transformed into the other by
translations and rotations. For polyhedral angles to be congruent, the corresponding parts
(face and dihedral angles) must be equal. However, if the corresponding equal parts are
arranged in reverse order, then the polyhedral angles cannot be transformed into each other
by translations and rotations. In this case, they are said to be symmetric.

A convex polyhedral angle lies entirely on one side of each of its faces. The sum
∠AOB +∠BOC + · · ·+∠EOA of face angles (Fig. 3.25a) of any convex polyhedral angle
is less that 2π (or 360◦).

4◦. A solid angle is a part of space bounded by straight lines issuing from a single point
(vertex) to all points of some closed curve (Fig. 3.25b). Trihedral and polyhedral angles are
special cases of solid angles. A solid angle is measured by the area cut by the solid angle
on the sphere of unit radius centered at the vertex. Solid angles are measured in steradians.
The entire sphere forms a solid angle of 4π steradians.

3.2.2. Polyhedra

3.2.2-1. General concepts.

A polyhedron is a solid bounded by planes. In other words, a polyhedron is a set of finitely
many plane polygons satisfying the following conditions:

1. Each side of each polygon is simultaneously a side of a unique other polygon, which is
said to be adjacent to the first polygon (via this side).

2. From each of the polygons forming a polyhedron, one can reach any other polygon by
successively passing to adjacent polygons.

These polygons are called the faces, their sides are called the edges, and their vertices
are called the vertices of a polyhedron.

A polyhedron is said to be convex if it lies entirely on one side of the plane of any of its
faces; if a polyhedron is convex, then so are its faces.

EULER’S THEOREM. If the number of vertices in a convex polyhedron is e, the number
of edges is f , and the number of faces is g, then e + f – g = 2.

3.2.2-2. Prism. Parallelepiped.

1◦. A prism is a polyhedron in which two faces are n-gons (the base faces of the prism)
and the remaining n faces (joining faces) are parallelograms. The base faces of a prism are
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62 ELEMENTARY GEOMETRY

( )a ( )b

Figure 3.26. A prism (a) and a truncated prism (b).

equal (congruent) and lie in parallel planes (Fig. 3.26a). A right prism is a prism in which
the joining faces are perpendicular to the base faces. A right prism is said to be regular if
its base face is a regular polygon.

If l is the joining edge length, S is the area of the base face,H is the altitude of the prism,
Psec is the perimeter of a perpendicular section, and Ssec is the area of the perpendicular
section, then the area of the lateral surface Slat and the volume V of the prism can be
determined by the formulas

Slat = Psecl

V = SH = Ssecl.
(3.2.2.1)

The portion of a prism cut by a plane nonparallel to the base face is called a truncated
prism (Fig. 3.26b). The volume of a truncated prism is

V = LP1, (3.2.2.2)

where L is the length of the segment connecting the centers of the base faces and P1 is the
area of the section of the prism by a plane perpendicular to this segment.

2◦. A prism whose bases are parallelograms is called a parallelepiped. All four diagonals
in a parallelepiped intersect at a single point and bisect each other (Fig. 3.27a). A paral-
lelepiped is said to be rectangular if it is a right prism and its base faces are rectangles. In
a rectangular parallelepiped, all diagonals are equal (Fig. 3.27b).

a

d c

b

( )a ( )b

Figure 3.27. A parallelepiped (a) and a rectangular parallelepiped (b).

If a, b, and c are the lengths of the edges of a rectangular parallelepiped, then the
diagonal d can be determined by the formula d2 = a2 + b2 + c2. The volume of a rectangular
parallelepiped is given by the formula V = abc, and the lateral surface area is Slat = PH ,
where P is the perimeter of the base face.

3◦. A rectangular parallelepiped all of whose edges are equal (a = b = c) is called a cube.
The diagonal of a cube is given by the formula d2 = 3a2. The volume of the cube is V = a3,
and the lateral surface area is Slat = 4a2.
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3.2. SOLID GEOMETRY 63

3.2.2-3. Pyramid, obelisk, and wedge.

1◦. A pyramid is a polyhedron in which one face (the base of the pyramid) is an arbitrary
polygon and the other (lateral) faces are triangles with a common vertex, called the apex of
the pyramid (Fig. 3.28a). The base of an n-sided pyramid is an n-gon. The perpendicular
through the apex to the base of a pyramid is called the altitude of the pyramid.

H

C

O

E

A B

D

( )a ( )b

Figure 3.28. A pyramid (a). The attitude DO, the plane DAE, and the side BC in a triangular pyramid (b).

The volume of a pyramid is given by the formula

V =
1
3
SH , (3.2.2.3)

where S is the area of the base and H is the altitude of the pyramid.

The apex of a pyramid is projected onto the circumcenter of the base if one of the
following conditions is satisfied:
1. The lengths of all lateral edges are equal.
2. All lateral edges make equal angles with the base plane.

The apex of a pyramid is projected onto the incenter of the base if one of the following
conditions is satisfied:
3. All lateral faces have equal apothems.
4. The angles between all lateral faces and the base are the same.

If DO is the altitude of the pyramid ABCD and DA⊥BC , then the plane DAE is
perpendicular to BC (Fig. 3.28b).

If the pyramid is cut by a plane (Fig. 3.29a) parallel to the base, then

SA1

A1A
=
SB1

B1B
= · · · =

SO1

O1O
,

SABCDEF
SA1B1C1D1E1F1

=

(
SO

SO1

)2
,

(3.2.2.4)

where SO is the altitude of the pyramid, i.e., the segment of the perpendicular through the
vertex to the base.

The altitude of a triangular pyramid passes through the orthocenter of the base if and
only if all pairs of opposite edges of the pyramid are perpendicular. The volume of a
triangular pyramid (Fig. 3.29b), where DA = a, DB = b, DC = c, BC = p, AC = q, and
AB = r, is given by the formula

V 2 =
1

288

∣∣∣∣∣∣∣∣

0 r2 q2 a2 1
r2 0 p2 b2 1
q2 p2 0 c2 1
a2 b2 c2 0 1
1 1 1 1 0

∣∣∣∣∣∣∣∣
, (3.2.2.5)
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B

O

E

C

A

A

B

F

F

E

S

O

C

D

D

1

1

1 1

1

1

1
r

a b
c

pq
C

A B

D

( )a ( )b

Figure 3.29. The pyramid cut by a plane and the original pyramid (a). A triangular pyramid (b).

where the right-hand side contains a determinant.
A pyramid is said to be regular if its base is a regular n-gon and the altitude passes

through the center of the base. The altitude (issuing from the apex) of a lateral face is called
the apothem of a regular pyramid. For a regular pyramid, the lateral surface area is

Slat =
1
2
Pl, (3.2.2.6)

where P is the perimeter of the base and l is the apothem.

2◦. If a pyramid is cut by a plane parallel to the base, then it splits into two parts, a pyramid
similar to the original pyramid and the frustum (Fig. 3.30a). The volume of the frustum is

V =
1
3
h(S1 + S2 +

√
S1S2) =

1
3
hS2

[
1 +

a

A
+
a2

A2

]
, (3.2.2.7)

where S1 and S2 are the areas of the bases, a and A are two respective sides of the bases,
and h is the altitude (the perpendicular distance between the bases).

h

S

S

2

1

( )a ( )b ( )c

h

a

a

a

a
b

b

b

b

1

1

1

1

h

a

a

a
b

b

1

Figure 3.30. A frustum of a pyramid (a), an obelisk (b), and a wedge (c).

For a regular frustum, the lateral surface area is

Slat =
1
2

(P1 + P2)l, (3.2.2.8)

where P1 and P2 are the perimeters of the bases and l is the altitude of the lateral face.
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3.2. SOLID GEOMETRY 65

3◦. A hexahedron whose bases are rectangles lying in parallel planes and whose lateral
faces form equal angles with the base, but do not meet at a single point, is called an obelisk
(Fig. 3.30b). If a, b and a1, b1 are the sides of the bases and h is the altitude, then the
volume of the hexahedron is

V =
h

6
[(2a + a1)b + (2a1 + a)b1]. (3.2.2.9)

4◦. A pentahedron whose base is a rectangle and whose lateral faces are isosceles triangles
and isosceles trapezoids is called a wedge (Fig. 3.30c). The volume of the wedge is

V =
h

6
(2a + a1)b. (3.2.2.10)

3.2.2-4. Regular polyhedra.

A polyhedron is said to be regular if all of its faces are equal regular polygons and all
polyhedral angles are equal to each other. There exist five regular polyhedra (Fig. 3.31),
whose properties are given in Table 3.4.

Tetrahedron Cube Octahedron

Dodecahedron Icosahedron

Figure 3.31. Five regular polyhedra.

3.2.3. Solids Formed by Revolution of Lines

3.2.3-1. Cylinder.

A cylindrical surface is a surface in space swept by a straight line (the generator) moving
parallel to a given direction along some curve (the directrix) (Fig. 3.32a).

1◦. A solid bounded by a closed cylindrical surface and two planes is called a cylinder; the
planes are called the bases of the cylinder (Fig. 3.32b).

If P is the perimeter of the base, Psec is the perimeter of the section perpendicular to the
generator, Ssec is the area of this section, Sbas is the area of the base, and l is the length of
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66 ELEMENTARY GEOMETRY

TABLE 3.4
Regular polyhedra (a is the edge length)

No. Name
Number of faces

and its shape
Number

of vertices
Number
of edges Total surface area Volume

1 Tetrahedron 4 triangles 4 6 a2√3 a3√2
12

2 Cube 6 squares 8 12 6a2 a3

3 Octahedron 8 triangles 6 12 2a2√3
a3√2

3

4 Dodecahedron 12 pentagons 20 30 3a2
√

25 + 10
√

5
a3

4
(15 + 7

√
5)

5 Icosahedron 20 triangles 12 30 3a2√3
5a3

12
(3 +

√
5)

l

H

( )a ( )b

Figure 3.32. A cylindrical surface (a). A cylinder (b).

the generator, then the lateral surface area Slat and the volume V of the cylinder are given
by the formulas

Slat = PH = Psecl,
V = SbasH = Ssecl.

(3.2.3.1)

In a right cylinder, the bases are perpendicular to the generator. In particular, if the
bases are disks, then one speaks of a right circular cylinder. The volume, the lateral surface
area, and the total surface area of a right circular cylinder are given by the formulas

V = πR2H ,
Slat = 2πRH ,
S = 2πR(R +H),

(3.2.3.2)

where R is the radius of the base.
A right circular cylinder is also called a round cylinder, or simply a cylinder.

2◦. The part of a cylinder cut by a plane nonparallel to the base is called a truncated cylinder
(Fig. 3.33a).

The volume, the lateral surface area, and the total surface area of a truncated cylinder

© 2007 by Taylor & Francis Group, LLC
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3.2. SOLID GEOMETRY 67

H
H

2
1

R

h

b

φ2a

R

R

( )a ( )b ( )c

H

r

R

Figure 3.33. A truncated cylinder (a), a “hoof” (b), and a cylindrical tube (c).

are given by the formulas

V = πR2 H1 +H2

2
,

Slat = πR(H1 +H2),

S = πR

[
H1 +H2 +R +

√
R2 +

(
H2 – H1

2

)2
]

,

(3.2.3.3)

where H1 and H2 are the maximal and minimal generators.

3◦. A segment of a round cylinder (a “hoof”) is a portion of the cylinder cut by a plane that
is nonparallel to the base and intersects it. IfR is the radius of the cylindrical segment, h is
the height of the “hoof,” and b is its width (for the other notation, see Fig. 3.33b), then the
volume V and the lateral surface area Slat of the “hoof” can be determined by the formulas

V =
h

3b
[
a(3R2 – a2) + 3R2(b –R)α

]
=
hR3

b

(
sinα –

sin3 α

3
– α cosα

)
,

Slat =
2πR
b

[(b – R)α + a],

(3.2.3.4)

where α = 1
2ϕ is measured in radians.

4◦. A solid bounded by two closed cylindrical surfaces and two planes is called a cylindrical
tube; the planes are called the bases of the tube. The volume of a round cylindrical tube
(Fig. 3.33c) is

V = πH(R2 – r2) = πHδ(2R – r) = πHδ(2r + δ) = 2πHδρ, (3.2.3.5)

where R and r are the outer and inner radii, δ = R – r is the thickness, ρ = 1
2 (R + r) is the

midradius, and H is the height of the pipe.

3.2.3-2. Conical surface. Cone. Frustum of cone.

A conical surface is the union of straight lines (generators) passing through a fixed point
(the apex) in space and any point of some space curve (the directrix) (Fig. 3.34a).
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68 ELEMENTARY GEOMETRY

H H
l

R
h

r
l

R

( )a ( )b ( )c ( )d

Figure 3.34. Conical surface (a). A cone (b), a right circular cone (c), and a frustum of a cone (d).

1◦. A solid bounded by a conical surface with closed directrix and a plane is called a cone;
the plane is the base of the cone (Fig. 3.34b). The volume of an arbitrary cone is given by
the formula

V =
1
3
HSbas, (3.2.3.6)

where H is the altitude of the cone and Sbas is the area of the base.
A right circular cone (Fig. 3.34c) has a disk as the base, and its vertex is projected onto

the center of the disk. If l is the length of the generator and R is the radius of the base, then
the volume, the lateral surface area, and the total surface area of the right circular cone are
given by the formulas

V =
1
3
πR2H ,

Slat = πRl = πR
√
R2 + H2,

S = πR(R + l).

(3.2.3.7)

2◦. If a cone is cut by a plane parallel to the base, then we obtain a frustum of a cone
(Fig. 3.34d). The length l of the generator, the volume V , the lateral surface area Slat, and
the total surface area S of the frustum of a right circular cone are given by the formulas

l =
√
h2 + (R – r)2,

V =
πh

3
(R2 + r2 +Rr),

Slat = πl(R + r),

S = π[l(R + r) +R2 + r2],

(3.2.3.8)

where r is the radius of the upper base and h is the altitude of the frustum of a cone.

3.2.3-3. Sphere. Spherical parts. Torus.

1◦. The sphere of radius R centered at O is the set of points in space at the distance R
from the point O (Fig. 3.35a). A solid bounded by a sphere is called a ball. Any section
of the sphere by a plane is a circle. The section of the sphere by a plane passing through
its center is called a great circle of radius R. There exists exactly one great circle passing
through two arbitrary points on the sphere that are not antipodal (i.e., are not the opposite
endpoints of a diameter). The smaller arc of this great circle is the shortest distance on the
sphere between these points. Concerning the geometry of the sphere, see Section 3.3. The
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3.2. SOLID GEOMETRY 69

surface area S of the sphere and the volume V of the ball bounded by the sphere are given
by the formulas

S = 4πR = πD2 =
3√36πV 2,

V =
4πR3

3
=
πD3

6
=

1
6

√
S3

π
,

(3.2.3.9)

where D = 2R is the diameter of the sphere.

R
R

2a

h

R

2a

h

( )a ( )b ( )c

Figure 3.35. A sphere (a), a spherical cap (b), and a spherical sector (c).

2◦. A portion of a ball cut from it by a plane is called a spherical cap (Fig. 3.35b). The
width a, the area Slat of the curved surface, the total surface area S, and the volume V of a
spherical cap can be found from the formulas

a2 = h(2R – h),

Slat = 2πRh = π(a2 + h2),

S = Slat + πa2 = π(2Rh + a2) = π(h2 + 2a2),

V =
πh

6
(3a2 + h2) =

πh2

3
(3R – h),

(3.2.3.10)

where R and h are the radius and the height of the spherical cap.

3◦. A portion of a ball bounded by the curved surface of a spherical cap and the conical
surface whose base is the base of the cap and whose vertex is the center of the ball is called
a spherical sector (Fig. 3.35c). The total surface area S and the volume V of a spherical
sector are given by the formulas

S = πR(2h + a),

V =
2
3
πR2h,

(3.2.3.11)

where a is the width, h is the height, and R is the radius of the sector.

4◦. A portion of a ball contained between two parallel plane secants is called a spherical
segment (Fig. 3.36a). The curved surface of a spherical segment is called a spherical zone,
and the plane circular surfaces are the bases of a spherical segment. The radius R of the
ball, the radii a and b of the bases, and the height h of a spherical segment satisfy the relation

R2 = a2 +

(
a2 – b2 – h2

2h

)2
. (3.2.3.12)
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70 ELEMENTARY GEOMETRY

The curved surface area Slat, the total surface area S, and the volume V of a spherical
segment are given by the formulas

Slat = 2πRh,

S = Slat + π(a2 + b2) = π(2Rh + a2 + b2),

V =
πh

6
(3a2 + 3b2 + h2).

(3.2.3.13)

R
r

R

2a

2b

(a) (b) (c)

h

R

2a

2b

h

Figure 3.36. A spherical segment (a) and a spherical segment without the truncated cone inscribed in it (b).
A torus (c).

If V1 is the volume of the truncated cone inscribed in a spherical segment (Fig. 3.36b)
and l is the length of its generator, then

V – V1 =
πhl2

6
. (3.2.3.14)

4◦. A torus is a surface generated by revolving a circle about an axis coplanar with the
circle but not intersecting it. If the directrix is a circle (Fig. 3.36c), the radius R of the
directrix is not less than the radius r of the generating circle (R ≥ r), and the center of the
generator moves along the directrix, then the surface area and the volume of the torus are
given by the formulas

S = 4π2Rr = π2Dd,

V = 2π2Rr2 =
π2Dd2

4
,

(3.2.3.15)

where D = 2R and d = 2r are the diameters of the generator and the directrix.

3.3. Spherical Trigonometry
3.3.1. Spherical Geometry

3.3.1-1. Great circle.

A great circle is a section of a sphere by a plane passing through the center.

Properties of great circles:
1. The radius of a great circle is equal to the radius of the sphere.
2. There is only one great circle through two arbitrary points that are not the opposite

endpoints of a diameter.

The smaller arc of the great circle through two given points is called a geodesic, and the
length of this arc is the shortest distance on the sphere between the two points. The great
circles on the sphere play a role similar to the role of straight lines on the plane.

© 2007 by Taylor & Francis Group, LLC
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3.3. SPHERICAL TRIGONOMETRY 71

Any two points on the sphere determine a pencil of planes. The intersection of each
plane in the pencil with the sphere is a circle. If two points are not the opposite endpoints
of a diameter, then the plane passing through the center of the sphere determines the largest
circle in the pencil, which is a great circle. The other circles are called small circles; the
intersection with the sphere of the plane perpendicular to the plane containing the great
circle is the smallest circle.

3.3.1-2. Measurement of arcs and angles on sphere. Spherical biangles.

The distances on the sphere are measured along great circle arcs. The great circle arc length
between points A and B is given by the relation

�
AB = Rα, (3.3.1.1)

where R is the radius of the sphere and α is the corresponding central angle (in radians).
If only the unit sphere (the radius R = 1) is considered, then each great circle arc can
be characterized by the corresponding central angle (in radians). The angle between two
intersecting great circle arcs is measured by the linear angle between the tangents to the
great circles at the point of intersection or, which is the same, by the dihedral angle between
the planes of the great circles.

Two intersecting great circles on the sphere form four spherical biangles. The area of a
spherical biangle with the angle α is given by the formula

S = 2R2α. (3.3.1.2)

3.3.2. Spherical Triangles

3.3.2-1. Basic notions and properties.

A figure formed by three great circle arcs pairwise connecting three arbitrary points on
the sphere is called a spherical triangle (Fig. 3.37a). The vertices of a spherical triangle
are the points of intersection of three rays issuing from the center of the sphere with the
sphere. The angles less than π between the rays are called the sides a, b, and c of a spherical
triangle. Such spherical triangles are called Euler triangles. To each side of a triangle there
corresponds a great circle arc on the sphere. The angles α, β, and γ opposite the sides a,
b, and c of a spherical triangle are the angles between the great circle arcs corresponding
to the sides of the triangle, or, equivalently, the angles between the planes determined by
these rays.

a

a

(b)(a)

α

α

b

b

c

c

ββ

γγ

Figure 3.37. A spherical triangle.
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72 ELEMENTARY GEOMETRY

By analogy with the circumcircle of a plane triangle, there is a “circumscribed cone of
revolution” that contains the three straight lines determining the triangle; the axis of this
cone is the intersection of the planes perpendicular to the sides at their midpoints. There
also exists an “inscribed cone of revolution” that is tangent to the three planes corresponding
to the spherical triangle; the axis of this cone is the intersection of the angle bisector planes.
The “circumradius” R and the “inradius” r are defined as the angles equal to half the angles
at the vertices of the first and the second cone, respectively.

If R is the radius of the sphere, then the area S of the spherical triangle is given by the
formula

S = R2ε, (3.3.2.1)

where ε is the spherical excess defined as

ε = α + β + γ – π (3.3.2.2)

and measured in radians.

A spherical triangle is uniquely determined (up to a symmetry transformation) by:
1. Three sides.
2. Three angles.
3. Two sides and their included angle.
4. Two angles and their included side.

Let α, β, and γ be the angles and a, b, and c the sides opposite these angles in a spherical
triangle (Fig. 3.37b). Table 3.5 presents the basic properties and relations characterizing
spherical triangles (with the notation 2p = a + b + c and 2P = α + β + γ – π). From the
relations given in Table 3.5, one can derive all missing relations by cyclically permuting the
sides a, b, and c and the angles α, β, and γ.

LEGENDRE’S THEOREM. The area of a spherical triangle with small sides (i.e., with sides
that are small compared with the radius of the sphere) is approximately equal to the area of
a plane triangle with the same sides; the difference between each angle of the plane triangle
and the corresponding angle of the spherical triangle is approximately equal to one-third of
the spherical excess.

The law of sines, the law of cosines, and the half-angle theorem in spherical trigonometry
for small sides become the corresponding theorems of the linear (plane) trigonometry.

Table 3.6 allows one to find the sides and angles of an arbitrary spherical triangle if
three appropriately chosen sides and/or angles are given.

3.3.2-2. Rectangular spherical triangle.

A spherical triangle is said to be rectangular if at least one of its angles, for example, γ, is
equal to 1

2π (Fig. 3.38a); the opposite side c is called the hypotenuse.

a

(a) (b)

α
b

c

π
2

β

a

b

α c

π

π
2

2
β

Figure 3.38. A rectangular spherical triangle (a). The Neper rules (b).
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3.3. SPHERICAL TRIGONOMETRY 73

TABLE 3.5
Basic properties and relations characterizing spherical triangles

No. The name of property Properties and relations

1 Triangle inequality

The sum of lengths of two sides is greater than the length of the third side.
The absolute value of the difference between the lengths of two sides is

less than the length of the third side,
a + b > c, |a – b| < c

2
Sum of two angles

of a triangle

The sum of two angles of a triangle is greater than
the third angle increased by π,

α + β < π + γ

3
The greatest side and

the greatest angle

The greatest side is opposite the greatest angle,
a < b if α < β;
a = b if α = β

4
Sum of angles
of a triangle

The sum of the angles lies between π and 3π,
π < α + β + γ < 3π

5
Sum of sides
of a triangle

The sum of sides lies between 0 and 2π
0 < a + b + c < 2π

6 The law of sines
sin a
sinα

=
sin b
sinβ

=
sin c
sin γ

7 The law of cosines
of sides

cos c = cos a cos b + sin a sin b cos γ

8
The law of cosines

of angles cos γ = – cosα cosβ + sinα sinβ cos c

9 Half-angle formulas
sin

γ

2
=

√
sin(p – a) sin(p – b)

sin a sin b
, cos

γ

2
=

√
sin p sin(p – c)

sin a sin b
,

tan
γ

2
=

√
sin(p – a) sin(p – b)

sin p sin(p – c)

10 Half-side theorem
sin

c

2
=

√
– sinP sin(P – γ)

sinα sinβ
, cos

c

2
=

√
sin(P – α) sin(P – β)

sinα sinβ
,

tan
c

2
=

√
– sinP sin(P – γ)

sin(P – α) sin(P – β)

11 Neper’s analogs

tan
c

2
cos

α – β
2

= tan
a + b

2
cos

α + β
2

,

tan
c

2
sin

α – β
2

= tan
a – b

2
sin

α + β
2

,

cot
γ

2
cos

a – b
2

= tan
α + β

2
cos

a + b
2

,

cot
γ

2
sin

a – b
2

= tan
α – β

2
sin

a + b
2

12 D’Alembert (Gauss)
formulas

sin
γ

2
sin

a + b
2

= sin
c

2
cos

α – β
2

, sin
γ

2
sin

a + b
2

= cos
c

2
cos

α + β
2

,

cos
γ

2
sin

a – b
2

= sin
c

2
sin

α – β
2

, cos
γ

2
cos

a – b
2

= cos
c

2
sin

α + β
2

13 Product formulas
sin a cosβ = cos b sin c – cosα sin b cos c,
sin a cos b = cosβ sin c – cos a sinβ cos γ

14 The “circumradius” R cotR =

√
sin(P – α) sin(P – β) sin(P – γ)

sinP
= cot

α

2
sin(α – P )

15 The “inradius” r tan r =

√
sin(p – α) sin(p – β) sin(p – γ)

sin p
= tan

α

2
sin(p – α)
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74 ELEMENTARY GEOMETRY

TABLE 3.5 (continued)
Basic properties and relations characterizing spherical triangles

No. The name of property Properties and relations

16
Willier’s formula for
the spherical excess ε tan

P

2
= tan

ε

4
=

√
tan

p

2
tan

p – a
2

tan
p – b

2
tan

p – c
2

17 L’Huiller equation tan
( γ

2
–
ε

4

)
=

√
tan p–a

2 tan p–b
2

tan p
2 tan p–c

2

TABLE 3.6.
Solution of spherical triangles

No. Three parts
specified

Formulas for the remaining parts

1 Three sides
a, b, c

The angles α, β, and γ are determined by the half-angle formulas and the cyclic
permutation.
Remark. 0 <a+b+c< 2π. The sum and difference of two sides are greater than the third.

2 Three angles
α, β, γ

The sides a, b, and c are determined by the half-side theorems and the cyclic
permutation.
Remark. π<α+β+γ < 3π. The sum of two angles is less than π plus the third angle.

3 Two sides a, b
and the

included
angle γ

First method.
α + β and α – β are determined from Neper’s analogs, then α and β can be found;

side a is determined from the law of cosines, sin c = sin γ
sin a
sinα

.

Second method.
The law of cosines of sides is applied, cos c = cos a cos b + sin a sin b cos γ,

cosβ =
cos b – sin a sin c

sin a sin c
, cosα =

cos a – sin b sin c
sin b sin c

.

Remark 1. If γ > β (γ < β), then c must be chosen so that c > b (c < b).
Remark 2. The quantities c, α, and β are determined uniquely.

4 A side c
and the two
angles α, β
adjacent to it

First method.
a + b and a – b are determined from Neper’s analogs, then a and b can be found;

angle γ is determined from the law of sines, sin γ = sin c
sinα
sin a

.

Second method.
The law of cosines of angles is applied, cos γ = – cosα cosβ + sinα sinβ cos c,

cos a =
cosα + cos β cos γ

sinβ sin γ
, cos b =

cosβ + cosα cos γ
sinα sin γ

.

Remark 1. If c > b (c < b), then γ must be chosen so that γ > β (γ < β).
Remark 2. The quantities γ, a, and b are determined uniquely.

5 Two sides a, b
and the angle α
opposite one

of them

β is determined by the law of sines, sinβ = sinα
sin b
sin a

.

The elements c and γ can be found from Neper’s analogs.
Remark 1.The problem has a solution for sin b sinα ≤ sin a.
Remark 2. Different cases are possible:
1. If sin a ≥ sin b, then the solution is determined uniquely.
2. If sin b sinα < sin a, then there are two solutions β1 and β2, β1 + β2 = π.
3. If sin b sinα = sin a, then the solution is unique: β = 1

2π.

6 Two angles
α, β and the

side a opposite
one of them

b is determined by the law of sines, sin b = sin a
sinβ
sinα

.

The elements c and γ can be found from Neper’s analogs.
Remark 1. The problem has a solution for sin a sinβ ≤ sinα.
Remark 2. Different cases are possible:
1. If sinα ≥ sinβ, then the solution is determined uniquely.
2. If sinβ sinα < sin a, then there are two solutions b1 and b2, b1 + b2 = π.
3. If sinβ sinα = sin a, then the solution is unique: b = 1

2π.
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The following basic relations hold for spherical triangles:

sin a = cos
(
π
2 – a

)
= sinα sin c = cot

(
π
2 – b

)
cot β = tan b cot β,

sin b = cos
(
π
2 – b

)
= sin β sin c = cot

(
π
2 – a

)
cotα = tan a cotα,

cos c = sin
(
π
2 – a

)
sin
(
π
2 – b

)
= cos a cos b = cotα cot β,

cosα = sin
(
π
2 – a

)
sin β = cos a sin β = cot

(
π
2 – b

)
cot c = tan b cot c,

cos β = sin
(
π
2 – b

)
sinα = cos b sinα = cot

(
π
2 – a

)
cot c = tan a cot c,

(3.3.2.3)

which can be obtained from the Neper rules: if the five parts of a spherical triangle (the right
angle being omitted) are written in the form of a circle in the order in which they appear in
the triangle and the legs a and b are replaced by their complements to 1

2π (Fig. 3.38b), then
the cosine of each part is equal to the product of sines of the two parts not adjacent to it, as
well as to the product of the cotangents of the two parts adjacent to it.
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